Computing a pyramid partition generating function with dimer shuffling
نویسنده
چکیده
Abstract. We verify a recent conjecture of Kenyon/Szendrői by computing the generating function for pyramid partitions. Pyramid partitions are closely related to Aztec Diamonds; their generating function turns out to be the partition function for the Donaldson–Thomas theory of a non-commutative resolution of the conifold singularity {x1x2 −x3x4 = 0} ⊂ C. The proof does not require algebraic geometry; it uses a modified version of the domino shuffling algorithm of Elkies, Kuperberg, Larsen and Propp, [3].
منابع مشابه
Non-commutative Donaldson–Thomas theory and the conifold
Given a quiver algebra A with relations defined by a superpotential, this paper defines a set of invariants of A counting framed cyclic A-modules, analogous to rank-1 Donaldson–Thomas invariants of Calabi–Yau threefolds. For the special case when A is the non-commutative crepant resolution of the threefold ordinary double point, it is proved using torus localization that the invariants count ce...
متن کاملBinary Codes and Kasteleyn 3-matrices
Abstract. Two cornerstones of the Kasteleyn method are: 1. rewriting the Ising partition function as the dimer partition function, that is, the generating function of the perfect matchings, and 2. expressing the dimer partition function of planar graphs as the determinant. This paper initiates the 3-dimensional Kasteleyn method. We show that the weight enumerator of any binary linear code is po...
متن کاملGenerating Functions for Colored 3d Young Diagrams and the Donaldson-thomas Invariants of Orbifolds
We derive two multivariate generating functions for threedimensional Young diagrams (also called plane partitions). The variables correspond to a colouring of the boxes according to a finite Abelian subgroup G of SO(3). We use the vertex operator methods of Okounkov– Reshetikhin–Vafa for the easy case G = Zn; to handle the considerably more difficult case G = Z2 × Z2, we will also use a refinem...
متن کاملParallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers
This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...
متن کاملGenerating Functions for Coluored 3d Young Diagrams and the Donaldson-thomas Invariants of Orbifolds
We derive two multivariate generating functions for threedimensional Young diagrams (also called plane partitions). The variables correspond to a colouring of the boxes according to a finite abelian subgroup G of SO(3). These generating functions turn out to be orbifold Donaldson–Thomas partition functions for the orbifold [C/G]. We need only the vertex operator methods of Okounkov–Reshetikhin–...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 116 شماره
صفحات -
تاریخ انتشار 2009